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Low-frequency expansion and specific heat for harmonic 
chains with random masses 

T M Nieuwenhuizen 
Institute for Theoretical Physics, Princetonplein 5 ,  Utrecht, The Netherlands 

Received 9 May 1983, in final form 2 5  October 1983 

Abstract. In the problem of harmonic chains with random masses the characteristic function 
is the analytic continuation into the complex frequency plane of the accumulated density 
of states and the exponential growth rate. A scheme is developed for the calculation of 
its asymptotic expansion in powers of the frequency. It is found that it changes sign under 
the unusual transformation w + -U,  ( (mk) )+  ( - l ) k - l ( ( m k ) ) .  Its first nine Taylor coefficients 
are presented in a table. With the first twelve of these coefficients, a two-point Pad6 
approximant for a related function is used for the calculation of the derivative of the 
specific heat, without making use of the spectral density. These calculations are carried 
out for several families of mass distributions. 

1. Introduction 

The chain of harmonic oscillators with random masses has been studied for a long 
time. Of special importance is the work of Dean (1960, 1961) on the calculation of 
the spectral density for binary mass distributions. He found very irregular behaviour 
of this function as soon as the ratio of the heavy and the light mass exceeds the critical 
value two. Existence of so-called special frequencies, where the spectral density 
vanishes, has been proven by Hori (1968) and others. In the regions between the 
special frequencies no regular behaviour of the spectral density is seen; Gubernatis 
and Taylor (1971) found numerically (for a related model) a detailed behaviour of 
the density of states for several scales of the coarse graining. 

Thermodynamic quantities, like the specific heat, however, have not been calculated, 
as far as we know. These are smooth functions of the temperature, given by integrals 
involving the spectral density. Irregular behaviour of this function will not have much 
influence on them. Calculations of the zero point energy have been carried out by 
Domb et a1 (1959). In this paper we will calculate the derivative of the specific heat 
with respect to the temperature. We have chosen this function because it will turn 
out to be sensitive for the choice of the mass distribution. The method we use is not 
exact but can be used without much effort for any mass distribution. Its main advantage 
is the fact that it does not need knowledge of the spectral density. This would be 
cumbersome, since the integral of this function must be calculated from Schmidt’s 
functional equation (Schmidt 1957), for a given mass distribution and a given value 
of the frequency. Instead we express the free energy as a sum involving the characteristic 
function-which is the analytic continuation of the accumulated spectral density into 
the complex frequency plane-in special points. These happen to lie in a part of the 
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complex frequency plane where this function can be approximated very well by Pad6 
approximants. 

In 0 2 we introduce a simple scheme for obtaining the expansion of the characteristic 
function in powers of the (complex) frequency. The coefficients of this expansion are  
given in terms of cumulants of the mass distribution. The starting point is an equation 
for a certain analytic function D( U ) ,  previously derived (Nieuwenhuizen 1982). From 
the solution of this equation, the characteristic function follows immediately for 
(complex) frequency. In § 3 we use these results and the method mentioned above 
for a numerical calculation of the derivative of the heat capacity with respect to  
temperature for several families of mass distributions: binary, rectangular, exponential 
and gamma distributions. Differences between the various cases and the accuracy of 
the method are discussed. 

2. Low frequency expansion of the characteristic function 

In this section we introduce a simple scheme for the calculation of the coefficients of 
the asymptotic expansion of the characteristic function Cl (&)  into powers of &. For 
this purpose we assume existence of all the moments of the mass distribution. The 
characteristic function extends the integrated spectral density H (  0’) into the complex 
5 =  -0’ plane. It is defined by (Nieuwenhuizen 1982) 

O( ( )= ( log  m)+[ l og ( (+w2)dH(w2)  

and has the property 

Cl(-w2*iO) = y ( w ’ ) * i ~ ~ ( w ’ ) .  (2.2) 

The quantity ?(U ’ ) ,  defined by the real part of (2.1)-(2.2), was introduced originally 
by Matsuda and Ishii (1970). It is positive for disordered one-dimensional systems 
and behaves for small w’ as 

r ( w 2 )  = $ ( ( ( m 2 ) ) / ( m ) ) w 2  ( W ’ J O ) ,  (2.3) 

where ((m’)) is the second cumulant of the mass distribution. Its positivity is connected 
to  the exponential localisation of all eigenfunctions (Matsuda and Ishii 1970, Thouless 
1972). Further it is known that as w 3.0 the integrated spectral density takes the same 
value as for  the chain where all masses have been replaced by their average values, 
i.e. H ( w 2 )  + ~-’((m))’’’w. Inserting this and (2.3) into (2.2) we obtain 

5) = (( m)5)  ‘ I 2  - i(((m 2))/( m)) 5 ( + O .  (2.4) 

Now we proceed to the evaluation of the higher-order terms of this expansion. As 
proven in Nieuwenhuizen (1982), the characteristic function can be obtained for given 
(complex) value of 5 from a certain function D( U ) ,  analytic in U and its implicit variable 
5. This function satisfies the equation 

D ( u )  = dR(m)[D(2+  m5- U - ’ )  +lOg(2+ m5- u-’ )] -D(w) ,  (2.5) 

where R (m) is the common distribution function of the independently distributed 
masses m,, in,, . . . . The characteristic function follows from the simple identity 

I 
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(Nieuwenhuizen 1982) 

n(5) = D ( a ) .  (2.6) 

For small 5 the behaviour of D is governed by the average value of m. We therefore 
Put 

m = (m)(  1 + am). 

Do( U )  = log(e’ - U-’) 

(2.7) 

If we neglect the fluctuations Sm, the solution (2.5) is given by (Nieuwenhuizen 1982) 

(2.8) 

(2.9) 

where p is defined by 
2 2 1 / 2  cosh p = 1 + $( m)[, sinh p = ( ( m ) [ + $ ( m )  [ ) . 

We introduce a new variable z ,  such that the singularity of Do at U =e-* is mapped 
onto the origin 

z=(ue”- l ) / (ue- ’ - l ) .  (2.10) 

Do( u ( z ) )  = log(2z sinh ( p ) / (  z - 1)). (2.11) 

D ( u ( z ) )  = D ~ ( U ( Z ) ) + E ( Z  e-2p). (2.12) 

Then (2.8) takes the form 

Returning to the general case, we define a new function E by 

The characteristic function is given by 

n = p +E(l ) .  (2.13) 

From (2.5) follows for E ( z )  the equation 

E (  Z -  (1  *“ + i d 2  ) = ( E ( z -  1 ‘778m(z-1)2 +$7j&n( z - 1) )+log(l+:vSm( l - + ) ) ) - - E ( l ) ,  (2.4) 

where the angular brackets indicate averaging with respect to m ;  77 is defined by 

(2.15) 

Further we used eCP = ( 1 - ; ~ ) / ( 1  + $ T ) .  
In the following we will need the ‘boundary condition’ IE(a)l< M, or, equivalently 

lim z E ’ ( z )  = 0. (2.16) 
2-CX 

The form of (2.14) is appropriate for expansion in powers of 77. In order to demonstrate 
the method we now calculate SZ up to order 7 7 5 .  For given integer N 3 1 we expand 
E as 

E ( Z ) = ~ E , ( Z ) + .  . . + 7 7 N ~ N ( ~ ) + ~ N ( ~ ;  71) ( 2 . 1 7 4  

and define 

E ( l ) = v Z l + .  . . + q N Z N + R N ( l ;  77) (2.17 b )  
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Upon substitution into equation (2.14) this yields the equations 

0 = -z1 ( 2 . 1 8 ~ )  

-2 ZE ’1 = -ti32 ( 1 - 1 / z ) - Z2 (2.1 8 b )  

-2zE; +22E‘, +2z2E;I = 6 , ( ~ - l ) ~ E ;  +$,(z-~)~EE;I + $ S 3 ( 1 - 1 / ~ ) ~ - 2 3  

-22E; +2zE;  - ~ z E ;  +2z2E;  

( 2 . 1 8 ~ )  

-:z3ET = S , ( Z - ~ ) ~ E ~  -63(z-1)4E’, 

+ ~ s , ( z - ~ ) ~ E ;  - S , ( Z - ~ ) ~ E ;  -$,(Z-I)‘E;’ -&( i - i /~ )~ -z~ .  
(2.1 8 d )  

Here the 8 k  are proportional to the central moments: 

6 k  = - ( m ) ) k )  (2.19) 

and 6 ,  =O. Using (2.16) we can solve the E ;  ( z )  and Z, ;  from (2.18b), for instance, 
it follows immediately that Z2=-iS2.  For the calculation of z k  ( k 2 3 ) ,  only 
E ’ ( z ) ,  . . . , is needed. We obtain 

E’, (z)=$62(-2/z2+ l / z3 )  

E; ( Z )  =fa,(  11 z 2  - 1/z3)  +;Si (-91 z 2  + 12/z3 - 7/ z4 + 3/2z5) 
(2.20) 

+is,( 3/ - 3/Z3 i- 1/ Z4) 
and 

z, = o  Zz=-Al Z3 = 2A2 -$A! Z4 = -6A3+ 18A2A1- 15A: 
(2.21) 

where Ak  is proportional to  the ( k  + 1)th cumulant of the mass distribution 

Ak = [ l / ( k  + I)! 2k”]((Wlk’’))/(m)k”. (2.22) 

The equation for R N ( z ;  7 )  has the form (2.14) but the inhomogeneous term is different 
and for fixed value of z proportional to 7N+1 for small 7. Since the solution of equation 
(2.5) for D(u,  5) is unique (Nieuwenhuizen 1982) the solution of the homogeneous 
part of (2.14) vanishes for all z. Thus for small 7 R,(z; 7)  must be proportional to  
vN+I too, showing that the expansions (2.17u)-(2.17b) are asymptotic in 7 for fixed 
value of z. From (2.9), (2.13), (2.151, and (2.176) we have 

(2.23) 
- 

This expansion is equivalent to an asymptotic expansion in the variable 45, (see 
equation (3.3)). Inserting (2.21) we cover equation (2.4). 

The importance of the present method lies in the fact that it only requires algebraic 
manipulations, but no integrals appear. In the original derivation of equation (2.3), 
however, Matsuda and Ishii (1970) had to perform a non-trivial integral?; in another 
approach, starting from the Green function, Denteneer and Ernst (1983, 1984) use 
an expansion in powers on the fluctuation Sm, given by (2.7), and have to perform 
multiple integrals. Their result for  the first four terms of the expansion of R in powers 

t From the theory developed in Nieuwenhuizen (1982) this can be understood as follows: these authors 
solved the analogue of the function W ( u ,  U ’ )  for small U* and used for y the equation y ( w 2 )  = 

logl l /u)d W ( u ,  U ’ ) ,  while we solve the function D(u ,  6 )  and use the simpler identity y ( w 2 )  = R e  D ( w ,  
-w2+iO). 
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of 42 agrees with the expression that follows from (2.23): 

n(6) = ( ( m ) 6 ) ’ / 2 - k K z ( m ) 6 +  ( h K 3 - i k K :  - k ) ( ( m ) 5 ) 3 / 2  

1115 

(2.24) 

where 

K ,  = ((m’))/(m)’. 

Via (2.2) this equation gives the first corrections to the leading behaviour of y ( w 2 )  
and H ( 0 2 )  as w 2 J 0 .  We note that already the term of order t3” in (2.24) is not 
given correctly by effective medium approaches (Denteneer and Ernst 1983, 1984). 
In the same way the coefficients Z,, . . . , ZI2 have been calculated, using the computer 
program ‘Schoonschip’ for performing the algebraic manipulations. The results for 
Z 1 , .  . . , Z9 are presented in table 1. The results for the gamma distributions (3.15) 
with m,=O are given in table 2; they were used as a check on the data of table 1. 

(i) 0 is antisymmetrc under the ‘parity’ transformation 7 -f -7 (or 46-f -46, or 
w -f -w for complex w )  and Ak + (-l)kAk. There does not seem to be a physical 
interpretation for this transformation, but it can be used as a check on the calculations. 
Further it is obvious that, because of this symmetry, the expressions take relatively 
simple forms in terms of the Ak. 

(ii) Zk only contains terms of the form contant X A,,A,, . . . A,, for which n,  +. . . + 
n, = k - 1, k - 3, .  . . , but n, +. . . + n, 2 2 if k 2 3. These two properties can be proven 
for a particular family of mass distributions. The total number of terms in zk, nk 

From these tables and equation (2.23) we notice two important features, - 

Table 1. The Taylor coefficients Z, for k = 1,. . . , 9 ,  expressed in terms of the quantities 
A4, defined by (2 .22) .  

z, = o  
Z,=-A, 

Z3 = 2A2 -:A: 

Z4=-6A3+18A2A, -15A: 
Z, = -ZA:+24A4-84A3A, -38A:+221A,A:-yA: 
Z,=yA2Al  -?A:- 120A5+480A,A, +408A3A2- 1350A3A:-1224A:A, +3390A2A:- 1695A: 

Z 7 - 8  -‘A2 I -57A 3 1  A - Y A : + Y A 2 A : - T A : + 7 6 0 A , - 3 2 4 0 A 5 A ,  -2640A4A2+9780A4A: 
-1242A: + 16 692A3A2Al -25  320A3A: +2524A:-34 503A:A: 
+ 2 4 g 4 4 7 5 , q 2 ~ ?  - 4 a 5 ~ h  

16 I 

Z,=-IA,A, -EA:+360A4A, +446A3A2-1327A3A:- 1332A:A, +yA2A:-1695A:-5040A7 

+ 25 200A6A, + 19 920A5A2- 81 600A5A: + 18 000A4A3- 133  680A4AzA, 

+ 220 200A,A: -63 OOOA:Al - 57 144A3A: + 565 800A3A2A: -546 300A3A: 

+ 171 432A$A, -994 380A:A: + 1322 160A2A: -472 200A: 
Z,=-&A:+9A,Al + ~ A ~ + W A 2 A : - W A : - 2 6 1 0 A 5 A ,  -3380A4A2+ 10 930A4A: 

-?A: + 22 186A,A2Al - 30 878A3A: + Y A :  - F A : A :  + ’ v A 2 A :  
- W A : + 4 0  320AR-221 760A7Al-171 360A6A2+768 600A6A:-150 480A5A, 
+1222 560A5A,Al-2171 700AsA:-72 288A:+1107 936A,A3Al+502 128A4A: 
-5362  344A4A2A: +5523  165A4A: +473 796A:A,-2531 133A:A: 
-4600 224A3A:Al + 18 985 374A3A2A: - T A 3 A :  
- 348 634A: + 8643 506A:A: -- A2A4 +-A2At 

2 1  
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Table 2. The Taylor coefficients 2, for k = 1 , .  . . , 9  for gamma distributions with m, = 0 
and parameter n, defined by (3.15). 

satisfies the equation 

nk = nk-2 + p (  k -  1)-  1 ( k z 2 )  (2.25) 
where p(k)  is the number of unrestricted partitions of k (Abramowitz and Stegun 
1972) and the term-1 enters the RHS because a term of the form constant X Ak-2-which 
contains a contribution proportional to &-, , arising only from the logarithm in 
(2.14)-does not occur. For large k one  finds that the nk grow exponentially fast 
(Abramowitz and Stegun 1972) 

( k + c o ) .  i- nk - (4.irJ2k)-' exp(nv  2k/3)' (2.26) 

This shows that the method becomes very laborious for large k; the number of different 
terms in E k ( Z )  grows even faster and this will limit the maximal number of Zk's that 
can be evaluated with a modest amount of computer time. 

Finally we note that there exists a great number of different one-dimensional 
models, which have a similar equation of motion (Alexander et al 1981), of which we 
mention: random Heisenberg spin models, random relaxation models, random electric 
networks. The expansion given above can be extended directly to these models. 

3. Calculation of the specific heat 

3.1. The method 

The free energy per particle, f ,  for a harmonic system is given by 

P f  = 5 d H (  w 2 )  log 2 sinh($h.w) (3.1) 

where P = 11 kT. We use units in which k = h = 1. W e  want to have an  expression for 
f for which no knowledge of H ( w 2 )  is needed. The reason is that this function-being 
proportional of the jump to  the characteristic function across its cut in the complex 
frequency p lane-cannot  be approximated easily, except for small values of w 2 ,  see 
0 2. Using the product formula sinh x = x II;"=, (1 +x2/12.n')  we obtain from (3.1) 

X 

Pf = log P -&log m) + c (a([/) -1% 5, - (log m)) 5, = (2  7rlT)2. (3.2) 

Here  we used definition (2.1) and the fact that (log w 2 )  = -(log m), see equations (3 .5)  
I = l  
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and (3.6). Formula (3.2) has been derived before (Maradudin et al 1971), but it was 
not used for actual calculations. It only requires knowledge of a(() for positive values 
of 6, where this function has no singularities. Hence it can be approximated there with 
Pad6 techniques. Using the method described in the preceding section we have 
calculated tke first twelve coefficients of the asymptotic expansion of the function in 
powers of 46: 

(3.3) 

The behaviour of R for large [ can be obtained easily from the equality (Nieuwenhuizen 
1982) 

1 ...)) 
2+m2[- 2+m3[- (3.4) 

where the masses m,,  m2, . . . are independent random variables with the same distribu- 
tion. For large 6 we obtain 

a([) =log [+(log m)+- 5 (i) -; ( 2  (5) + (i)’) 
+L t3 (4 (i) (3) +: ($)) + 0 ($) * (3.5) 

This expansion equal to the expansion into moments of the frequency distribution, cf 
(2.1) 

R( [) = log [ - (log w 2 )  + ( 1/ [)( w 2 )  - (1/ 2t2)(  U ‘ )  + ( 1/ 3[’)(w6) + . . . . (3.6) 

This point was previously considered by Domb et a1 (1959) who used combinatorial 
methods for the construction of the moment generating function and calculated the 
moments up to (U’’) (whereas (3.4) was deduced from a simple algebraic equality 
(Bellman 1956)). 

The derivative of the specific heat with respect to temperature follows from (3.2) 
and is given by 

dc, 1 _- - -- c g(2nlT)  d T  Tie l  

where 

g(x) = l2x2R’(x2)+~8x4R’’(x2)+8x6R“’(x2). 

(3.7) 

(3.8) 

For the calculation of dc,/dT, we approximate g(x) by a two-point Pad6 approximant 
of the form 

(3.9) 

The 2N unknown coefficients pk, q k  are fixed by the requirements that (i) n Taylor 
coefficients of gN(x) around x = 0 agree with the values prescribed by (3.3) and (3.8); 
(ii) 2N-n  coefficients of the expansion of gN(x) into powers of l / x  agree with 
equations (3.5) and (3.8) (the odd coefficients vanish.) This is a two point Pad6 
approximation; an explicit solution exists in the form of determinants (Baker 1975). 
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In order t o  reproduce the correct low-temperature behaviour we take, instead of (3.7)1, 

For finite N the integral will have a small, non-vanishing value. Using the Euler- 
Maclaurin summation formula (Abramowitz and Stegun 1972), we obtain from this 
equation the asymptotic expansion in powers of T2 

(3.11) 

where 5 ( 2 k + 2 )  is the Riemann zeta function and n, is the largest integer less than 
or equal t o  in .  The same result follows if one determines H ( w 2 )  from (3.3), i.e. 
H ( w ’ )  = x ? = ~  1 / n ( - l ) k C 2 k + ] W 2 k + 1  and performs the integral in (3.1) term by term. 
The first terms of (3.1 1) are given by 

(3.12) dc , /dT = ~ ~ J ~ + ~ n ~ ( & - & ~ ~ + i $ g r c $ ) ( m )  3 / 2  T 2 . 

This shows that for most distributions-and in particular symmetric ones, where 
K~ = O-dc,/dT will increase for small temperatures, but we will also encounter an  
exceptional case, where it decreases. For large T we have 

(3.13) 

Here  B, are  Bernoulli numbers and we have used (3.5) and (3.6). 

3.2. Calculation of the derivative of the specific heat 

We  have used the method, described above, for a numerical calculation of dc , /dT  
For that purpose we fixed the first twelve ( n  = 12)  Taylor coefficients of gN(x) at  x = 0 
to the values following from (3.3) and (3.8) and further also twelvecoefficients ( N  = 12)  
of its expansion in powers of l / x .  (Choosing N = n turned out to yield no poles of 
gN(x) for positive x in almost all cases.) Thus in total 24 relations containing non-trivial 
information about g (x )  a re  satisfied. The  calculations have been performed for the 
following families of mass distributions: 

( i )  Binary distributions, where the masses take the values m = 1 and m = M 3 1 
with probabilities 4, (see figure l ( a ) ) ;  for comparison we have also plotted the M = m 
expression, which follows from the frequency spectrum given in (Domb et a1 1959) 

2q2 x 2  ( l ) ,  
dc, 
d T  k = l  !=I  sinh x t a n h x  
- = q S ( T ) + T  1 pk 7 -- 

where 

x = T-’ sin[n1/2( k + l)], 

(3.14) 

t One can can also make a two point Pade approximant for dc , /dT as a function of the temperature-or  
rather its square which is an even function. This will be less accurate, however, than the method used above, 
since only the odd Ck’s are needed and thus less information is used. 
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Figure 1. The derivative of the specific heat as a function of temperature for ( a )  binary 
distributions ( m  = 1 or m = M with probability 4) for different values of M :  (in the case 
M =cc there is an additional &function at T=O);  ( b )  uniform distributions where 
1 s m s M for different values of M ;  ( c )  gamma distribution with m, = f for different 
values of n, ( m ) =  1; ( d )  exponential distributions for different values of M = 2 / m , -  1, 
( m )  = 1 and ( e )  gamma distributions with m,=O for different values of n, ( m )  = 1. 

Here p ( q )  is the probability for the occurrence of a light (heavy) particle; we have 
p = q = i. Even in the case of mass ratio M = 100 the behaviour for low T is quite 
different from the one predicted by this equation; for high T the agreement is very 
good. In order to give an idea of the accuracy of our method, we mention that the 
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absolute error is at  most equal t o  4 X lop4 if M = 5, 4 X if M = 10 and 3 X low2 
in the dip in the case M = 100. On comparison of the results for different values of 
n = N, the errors seem to  decrease exponentially with increasing N. It should be noted 
that we have calculated the ensemble average of dc,/dT. For single, long chains one  
can also calculate dc,/dT. The error due to  finite size effects will then be of the 
order - (total number of particles)-"*. Thus for M = 5 our calculations a re  as accurate 
as calculations for a given chain with about $10' particles, which is 20 times larger 
than the largest chain discussed by Dean (1972). 

(ii) Uniform mass distributions where the masses take values between m = 1 and 
m = M 3 1, (see figure l ( b ) . )  As in case ( i )  dc , /dT  increases for low T faster than 
in the ordered case M = 1, cf (3.12). If M+co there are essentially no light 
particles in the system and dc , /dT  will approach a &function at  T=O. Also 
here this approach is slow for low T and fast for large T. 

(iii) Distributions where 

m = m,, + (1 - mo)x (3.15a) 

with fixed m,) (0 S mo s 1) and the positive random variable x has a gamma distribution 
with density 

ne-""( nx)"-'/ r( n) .  (3.15 b )  

In figure 1 (c )  we have taken m, = 4. The average value of the masses is normalised to  
unity, so dc , /dT  equals f.rr at T = O ,  cf (3.12). The  second term of this equation is 
equal t o  ?7r3{& + n-'[&( 1 - mo)4 - A( 1 - m , ~ ~ ] }  T2,  which is smaller than in the  
ordered case obtained by putting either m, = 1 o r  n =CO (whereas it is larger in cases 
(i) and (ii)). This indicates that for these distributions the value of d c , / d T  will be 
smaller than in the corresponding ordered model over a large interval, cf figure l ( c ) .  

(iv) Exponential distributions where mo m < 00 (0 6 mo s 1) with density 
(1 - mo)-' exp[-( m - mo)/(  1 - mo)].  Here  we chose the same ratios for the quantity 
M = 2(m)/mo- 1 = 2/mo- 1 (or, equivalently, for the quantity m o / ( m ) )  as in the cases 
(i) and (ii), see figure l ( d ) .  For these distributions an exact expression for the 
characteristic function has been derived (Nieuwenhuizen 1983) and this could be used 
to  test the accuracy of the method. For mo20.15 the absolute error was less than 
o r  equal to 1.5 X lo-'; for the case mo =&(M = 100) the exact expression of the 
accumulated density of states had to be used, because of singularities occurring in 
g N ( x )  for positive x. 

(v) For comparison, we have plotted in figure 1(e) dc , /dT  for gamma mass 
distributions, with densities as discussed in (iii), with now, however, mo = 0. In these 
cases there is more disorder than in (iii), i.e. the cumulants have larger values. These 
results have been calculated from values for H (  w 2 )  obtained numerically by solving 
certain differential equations, which follow from (2.5) for these mass distributions 
(Nieuwenhuizen 1983). The case n = 1 coincides with the case mo=O in (iv). Also 
here in the limit n = CO all masses have the same value m = 1, but the approach to  this 
behaviour is much slower than in (iii). 

From the l / n  expansion, we obtain for the case mo=O (it also follows from 
(2.21)-(2.23)) 

(3.16) 
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This yields a correction to dc,/dT of the form 

dc,( T ;  n)  - dc,( T;  CO) 

d T  d T  
- 

2 P 3  
nsinh2B {(&-’) - 

(3.17) 

For T + a  this coincides with (3.13) in leading order 1 / n .  For T+O the term 
proportional to l / n  vanishes exponentially fast, which agrees with the fact that there 
are no contributions proportional to 1/ n to the odd Ck’s, see § $  2, and 3.1. At T = 0.3 
the correction term is equal to -0.726/n,  which shows a very slow approach as function 
of n to the n = o;, value at this temperature. 
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